SOLUTION
FOR PROBLEM 1
Value
to Hash : 
| 
2341 | 
4234 | 
2839 | 
430 | 
22 | 
397 | 
3920 | 
h(x)
= x mod 7 
2341
 % 7 = 3 
4234
 % 7 = 6 
2839
 % 7 = 4 
430
  % 7 = 3 
22
   % 7 = 1 
397
  % 7 = 5 
3920
 % 7 = 0
Original
Table :
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
EMPTY | 
EMPTY | 
EMPTY | 
EMPTY | 
EMPTY | 
EMPTY | 
EMPTY | 
SOLUTION USING SEPARATE
CHAINING :
Step
1 : insert value 2341
Calculation
: 2341 % 7 = 3
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
EMPTY | 
EMPTY | 
EMPTY | 
2341 | 
EMPTY | 
EMPTY | 
EMPTY | 
Step
2 : insert value 4234
Calculation
: 4234 % 7 = 6
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
EMPTY | 
EMPTY | 
EMPTY | 
2341 | 
EMPTY | 
EMPTY | 
4234 | 
Step
3 : insert value 2839
Calculation
: 2839 % 7 = 6
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
EMPTY | 
EMPTY | 
EMPTY | 
2341 | 
2839 | 
EMPTY | 
4234 | 
Step
4 : insert value 430
Calculation
: 430 % 7 = 3
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
EMPTY | 
EMPTY | 
EMPTY | 
2341 | 
2839 | 
EMPTY | 
4234 | 
|  |  |  |  |  |  |  | 
|  |  |  | 
430 |  |  |  | 
Step
5 : insert value 22
Calculation
: 22  % 7 = 1
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
EMPTY | 
22 | 
EMPTY | 
2341 | 
2839 | 
EMPTY | 
4234 | 
|  | ||||||
| 
430 | 
Step
6 : insert value 397
Calculation
: 397  % 7 = 5
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
EMPTY | 
22 | 
EMPTY | 
2341 | 
2839 | 
397 | 
4234 | 
|  | ||||||
| 
430 | 
Step
7 : insert value 3920
Calculation
: 3920 % 7 = 0
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
3920 | 
22 | 
EMPTY | 
2341 | 
2839 | 
397 | 
4234 | 
|  | ||||||
| 
430 | 
Final table Values : 
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
3920 | 
22 | 
EMPTY | 
2341 | 
2839 | 
397 | 
4234 | 
|  | ||||||
| 
430 | 
FINISH SOLUTION USING
SEPARATE CHAINING :
SOLUTION USING OPEN
ADDRESSING :
USING LINEAR PROBING :
LINEAR
PROBING - Step 1 : insert value 2341
Calculation
: 2341 % 7 = 3
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
EMPTY | 
EMPTY | 
EMPTY | 
2341 | 
EMPTY | 
EMPTY | 
EMPTY | 
LINEAR
PROBING - Step 2 : insert value 4234
Calculation
: 4234 % 7 = 6
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
EMPTY | 
EMPTY | 
EMPTY | 
2341 | 
EMPTY | 
EMPTY | 
4234 | 
LINEAR
PROBING - Step 3 : insert value 2839
Calculation
: 2839 % 7 = 6
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
EMPTY | 
EMPTY | 
EMPTY | 
2341 | 
2839 | 
EMPTY | 
4234 | 
LINEAR
PROBING - Step 4 : insert value 430
Calculation
: 430 % 7 = 3
Position
3 is not empty so try : ( 3 + 1 ) % 7 = 4
Position
4 also is not empty so try : ( 4 + 1 ) % 7 = 5
Finally
position 5 is empty.
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
EMPTY | 
EMPTY | 
EMPTY | 
2341 | 
2839 | 
430 | 
4234 | 
LINEAR
PROBING - Step 5 : insert value 22
Calculation
: 22  % 7 = 1
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
EMPTY | 
22 | 
EMPTY | 
2341 | 
2839 | 
430 | 
4234 | 
LINEAR
PROBING - Step 6 : insert value 397
Calculation
: 397  % 7 = 5
Position
5 is not empty so try : ( 5 + 1 ) % 7 = 6
Position
6 also is not empty so try : ( 6 + 1 ) % 7 = 0
Finally
position 0 is empty.
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
397 | 
22 | 
EMPTY | 
2341 | 
2839 | 
430 | 
4234 | 
LINEAR
PROBING - Step 7 : insert value 3920
Calculation
: 3920 % 7 = 0
Position
0 is not empty so try : ( 0 + 1 ) % 7 = 1
Position
1 also is not empty so try : ( 1 + 1 ) % 7 = 2
Finally
position 2 is empty.
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
397 | 
22 | 
3920 | 
2341 | 
2839 | 
430 | 
4234 | 
LINEAR
PROBING - Final table Values : 
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
397 | 
22 | 
3920 | 
2341 | 
2839 | 
430 | 
4234 | 
FINISH USING LINEAR PROBING
:
USING DOUBLE HASHING  with second hash function h’(x) = (2x-1) mode
7
DOUBLE
HASHING - Step 1 : insert value 2341
Calculation
: 2341 % 7 = 3
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
EMPTY | 
EMPTY | 
EMPTY | 
2341 | 
EMPTY | 
EMPTY | 
EMPTY | 
DOUBLE
HASHING - Step 2 : insert value 4234
Calculation
: 4234 % 7 = 6
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
EMPTY | 
EMPTY | 
EMPTY | 
2341 | 
EMPTY | 
EMPTY | 
4234 | 
DOUBLE
HASHING - Step 3 : insert value 2839
Calculation
: 2839 % 7 = 6
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
EMPTY | 
EMPTY | 
EMPTY | 
2341 | 
2839 | 
EMPTY | 
4234 | 
DOUBLE
HASHING - Step 4 : insert value 430
Calculation
: 430 % 7 = 3
Collision
detected so use second hash function : h’(x)
= (2x-1) mode 7
Position
3 is not empty so try : ( 2 * 430 - 1 ) % 7 = 5
So
: ( 3 + ( 1 * 5 )) % 7 = 1
Finally
position 1 is empty.
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
EMPTY | 
430 | 
EMPTY | 
2341 | 
2839 | 
EMPTY | 
4234 | 
DOUBLE
HASHING - Step 5 : insert value 22
Calculation
: 22  % 7 = 1
Collision
detected so use second hash function : h’(x)
= (2x-1) mode 7
Position
1 is not empty so try : ( 2 * 22 - 1 ) % 7 = 1
So
: ( 1 + ( 1 * 1 )) % 7 = 2
Finally
position 2 is empty.
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
EMPTY | 
430 | 
22 | 
2341 | 
2839 | 
EMPTY | 
4234 | 
DOUBLE
HASHING - Step 6 : insert value 397
Calculation
: 397  % 7 = 5
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
EMPTY | 
430 | 
22 | 
2341 | 
2839 | 
397 | 
4234 | 
DOUBLE
HASHING - Step 7 : insert value 3920
Calculation
: 3920 % 7 = 0
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
3920 | 
430 | 
22 | 
2341 | 
2839 | 
397 | 
4234 | 
DOUBLE
HASHING - Final table Values : 
| 
0 | 
1 | 
2 | 
3 | 
4 | 
5 | 
6 | 
| 
3920 | 
430 | 
22 | 
2341 | 
2839 | 
397 | 
4234 | 
FINISH USING DOUBLE
HASHING  :
 
 



 
 
 
 
 
 
 
 
0 comments:
Post a Comment
Say whut you want, but be responsible on whut you said...